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1. Introduction

During the 20th century, many studies were carried out to analyze the dynamics of structures
under moving loads. The interest was at the beginning oriented toward bridges and railways to
study the conditions under which these structures are stable [1,2]. The principal results show that,
compared to a beam under a static load, the load inertia modifies the beam dynamics in two ways:
the inertia renders the beam deflection higher, and resonance is reached at a lower moving load
velocity [3,4]. Dugush and Eisenberger [5] applied modal analysis in combination with integral
transformation methods to determine the dynamic deflection and the internal forces of a multi-
span non-uniform beam under moving loads. They showed that a small number of mode shapes
are required to obtain accurate solutions. Zhu and Law [6] studied the dynamic loading on a
multi-lane continuous bridge due to vehicles moving on top of the bridge deck and highlighted the
influence of the transverse vehicle position and road surface roughness on the dynamic impact
factor, defined as the ratio of the maximum dynamic response to the maximum static response.
Gbadeyan and Oni [7] developed a general approach to determining solutions of both moving
force and moving mass problems for both Euler–Bernoulli and Rayleigh beams having any of the
classical end-support conditions.
From experiments, it appears that as the amplitude of oscillations increases, non-linear effects

come into play; therefore acknowledging that the source of non-linearity may be inertial,
geometric or material in nature, the influence of the non-linearity on the beam dynamics should
also be highlighted (see Ref. [8] and references therein). In this paper, attention is put on non-
linearity which may be caused by large curvatures or non-linear stretching of the mid-plane of a
beam. In general, exact solutions for the beam response are not available, so recourse has been to
approximate analyses by using purely numerical techniques, purely analytic techniques and
numerical–analytic techniques. In the numerical–analytic technique adopted, the displacement is
expressed in the form of a combination of the linear free-oscillation modes of the beam. Then, the
equations of motion of the modal co-ordinates are obtained and solved by a perturbation
technique. Nayfeh and Mook [8] developed an approach to determine the non-linear equation of
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motion of a beam with non-moving loads and obtained a Duffing-like system. In this paper, the
moving load inertia is included in the Duffing equation in order to study the non-linear dynamics
of a Euler–Bernoulli beam under moving loads so as to handle the influence of both the load
inertia and the non-linearity. The method of multiple scales is adopted to highlight the parametric
resonance. The influence of the mass parameter, the damping and the load velocity on the beam
deflections are examined. Section 2 presents the model, the modal equation and the numerical
results. Conclusions are given in Section 3.

2. Model and modes equations

2.1. The model

Consider a beam of length l under a moving load as shown in Fig. 1. In discussing beams,
attention is restricted to planar and non-rotating motions. The equations of motion are obtained
by a combination of the inertial effect of the moving load [4] and the non-linear effect in the beam
dynamics [8]. Assuming that plane sections remain plane and a linear stress–strain law, the
equations of motion governing the non-linear dynamics of a beam with uniform shape subjected
to a moving load of mass M and velocity v are given by

rSutt � ESuxx ¼ 1
2
ðESÞ

@

@x
½ð1� 2uxÞy2x�; ð1Þ

rSytt þ EIyxxxx þ cyt þ Mdðx � vtÞfytt þ 2vyxt þ v2yxxg

¼ F ðtÞdðx � vtÞ þ ES
@

@x
ðeyxÞ; ð2Þ

where

e ¼ ux � u2x þ
1
2

y2x: ð3Þ

In these equations E is Young’s modulus of the beam, r is the beam density, S; I are, respectively,
the area and moment of inertia of the beam cross-section. yðx; tÞ is the vertical deflection of the
beam, while u is the axial displacement, y and u depend on the spatial co-ordinate x and the time t:
The subscripts nt and nx stand for the nth order derivative with respect to t and x: F ðtÞ ¼ Mg is
the force due to the moving load where g is the acceleration due to the gravity. c is the damping
which is assumed to be constant. dð
Þ is Dirac’s delta function and illustrates the fact that the
position of the load changes with time. The inertial effect of the moving load is shown in Eq. (2)
by the presence of the fifth term. In the absence of this term, the system is familiar as a beam
under a moving force. The last term in Eq. (2) indicates that the motion is non-linear.
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Fig. 1. Beam under moving load.
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At this point, it is convenient to introduce dimensionless variables:

X ¼
x

l
; t ¼ vt=l; Y ¼

y

l
; U ¼

u

l
:

Consider a hinged–hinged beam and assume that the longitudinal inertial terms utt and u2x are
negligible (case of beam with small radius of gyration). Eqs. (1) and (2) reduce to

Ytt þ
EI

mv2
Yxxxx þ 2m0Yt þ

M

m
d½lðx � tÞ�ðYtt þ 2Yxt þ YxxÞ

¼
E

2rv2

Z 1

0

Y 2
x dx

� �
Yxx þ F ðx; tÞ; ð4Þ

where

2m0 ¼ cl=mv; F ðx; tÞ ¼ M lg d½lðx � tÞ�=mv2 and m ¼ rS: ð5Þ

2.2. Mode equations

It is convenient to assume an expansion for the deflection Y in terms of the combination of the
linear free-oscillation modes, which are those of a hinged–hinged beam in this case. Thus, an
expansion is assumed for Y in the form

Y ðX ; tÞ ¼
XN
n¼1

YnðtÞfnðX Þ; ð6Þ

where fnðX Þ ¼ sinðnpX Þ is the natural mode of a hinged–hinged beam.
Substituting Eq. (6) into Eq. (4), multiplying by sinðjpX Þ and integrating over the interval [0,1]

leads to the mode equations

.Yj þ o2j Yj ¼ � E 2
XN
n¼1

ð .Yn sin nptþ 2 ’Ynnp cos npt� n2p2Yn sin nptÞ

"

þ 2Zoj
’Yj þ

j2p4b
4

Yj

XN
n¼1

n2Y 2
n � 2K sinðjptÞ

#
: ð7Þ

E ¼ M=ml is the non-dimensional parameter describing the ratio of the moving load mass M to
the mass of the beam given by

r 
 S 
 l 
 oj ¼
ðjpÞ2

vl

ffiffiffiffiffiffi
EI

m

r
; Eb ¼

E

rv2
; K ¼

gl

v2
; 2m0 ¼ 2%Zoj ¼ 2ZEoj:

A solution of Eq. (7) is sought by the method of multiple scales. Accordingly, the solution is
expressed in terms of different time scales as

Yjðt; EÞ ¼ Yj0ðt0; t1Þ þ EYj1ðt0; t1Þ; ð8Þ

where tm ¼ Emt; i.e., t0 ¼ t and t1 ¼ Et represents different independent time scales. Substituting
in Eq. (7), and noting that d=dt ¼ D0 þ ED1 þ?þ;d2=dt2 ¼ D20 þ 2ED0D1 þ?; where D0 ¼
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d=dt; D1 ¼ d=dt1; the following set of linear ordinary differential equations result:

E0:D20Yj0 þ o2j Yj0 ¼ 0; ð9Þ

E1:D20Yj1 þ o2j Yj1 ¼ � 2iojðD1Aj expðiojt0Þ þ c:cÞ � 2Zo2j ðiAj exp iojt0 þ c:cÞ

�
1

2

XN
n¼1

ðo2n þ n2p2ÞðAn expðiont0Þ þ c:cÞfexpðiðn þ jÞpt0Þ � expðiðn � jÞpt0Þ þ c:cg

"

þ 2np onðiAn expðiont0Þ þ c:cÞfi expðiðn � jÞpt0Þ � i expðiðn þ jÞpt0Þ þ c:cg

#

� ðiK expðijpt0Þ þ c:cÞ �
b

4
p4j2 Aj

XN
n¼1

n2½An2 exp iðoj þ 2onÞt0

" 

þ %A2n exp iðoj � 2onÞt0 þ 2An %An expðiojt0Þ�

#
þ c:c

!
: ð10Þ

Eq. (10) is obtained by substituting the solution of Eq. (9) taken as Yj0 ¼ Aj expðiot0Þ þ c:c: where
Aj is a complex amplitude yet to be determined, c.c. stands for the complex conjugate and
i ¼ ð�1Þ1=2:
Inspection of Eq. (10) shows that only a parametric resonance with ojEjp is possible. The

internal resonance cannot be possible here because the equations ojEjp and onEnp cannot be
satisfied for naj; for a single value of the moving load velocity. At the resonance, the
corresponding velocity is given by

v ¼
ðjpÞ2

oj l

ffiffiffiffiffiffi
EI

rS

s
¼

jp
l

ffiffiffiffiffiffi
EI

rS

s
;

so ojEjp and onEnp could not be possible for the same velocity if naj:
From Eq. (10) it can be seen that as oj approaches jp; secular terms develop. As one is looking

for bounded solutions, these terms are to be eliminated.
Putting

jp ¼ oj þ Edj; ð11Þ

dj is a parameter to quantify the divergence between jp and oj: Equating the secular terms to zero
leads to the condition on Aj given by

2iojD1Aj ¼ � 2iZo2j Aj � 1
2
fðoj � jpÞ2 %Aj expð2 i edjt0Þ � 2ðo

2
j þ ðjpÞ2ÞAjg

� 3
4
bp4j2A2j %Aj � iK expði edjt0Þ: ð12Þ

Noting that Aj is independent of t0 and assuming Aj to be of the form

Aj ¼ 1
2
aj expðiyjÞ: ð13Þ

Eq. (12) results in two first order differential equation for each amplitude and transformed phase
jj ¼ Edjt0 � yj with j ¼ 1; 2; 3y:

oj ’aj ¼ �EZo2j aj � 0:25Eðoj � jpÞ2aj sin 2jj � EK cos jj; ð14Þ
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ojaj ’jj ¼ Eojdjaj � 0:25Eðoj � jpÞ2aj cos 2jj þ 0:5Eðoj þ j2p2Þaj

� E 3
32

bp4j2a3j þ EK sin jj: ð15Þ

Eqs. (14) and (15) can be integrated to obtain aj and jj for each modal response. The solution of
each mode is given by

Yjðt; eÞ ¼ aj cosðjpt� jjÞ þ E
ðoj þ jpÞaj

8jp
cosð3jpt� jjÞ þ

bp4j4a3j
128o2j

cosð3jpt� 3jjÞ

" #
: ð16Þ

It is obvious that the transient response of each mode in the case of the linear dynamics of an
elastic beam under moving loads can also be obtained easily from theses equations by putting
b ¼ 0:

2.3. Numerical results

For the numerical simulation, the following data are used: E ¼ 200� 109 N=m2; r ¼
7850 kg=m3 (steel), l ¼ 10 m; Z ¼ 0:033; S ¼ 0:01 m2 or 0:0055 m2: It is assumed that the
cross-section of the beam is a square.
Eqs. (14) and (15) are numerically solved to determine the values aj and jj which are replaced in

Eq. (16) to obtain the modal co-ordinate.
Figs. 2 and 3 show the beam deflection for the three first modes; each curve is obtained at the

corresponding resonance velocity (first mode: v ¼ 46:64 m=s; second mode: v ¼ 93:28 m=s; third
mode: v ¼ 139:92 m=s). In Fig. 3, one can observe that the deflection of the second mode is equal
to zero accordingly with Eq. (6) where fnðX Þ is equal to zero for n ¼ 2 and X ¼ 0:5: It is obvious
that the first mode leads to the highest deflection compared to the second and the third modes.
Because one is interested in the influence of the non-linearity and the inertia of the moving load on
the beam deflection, only the first mode will be considered in the analysis which follows.
Fig. 4 shows the inertial effect of the moving load. In this figure, the response of the beam is

compared with that of a beam under a moving force. It is observed that the maximum amplitude
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Fig. 2. Beam deflection, variation with X ; ZE ¼ 0:01; E ¼ 0:3; t ¼ 1; dj ¼ �2:5 (resonance velocities—first mode: v ¼
46:64 m=s; second mode: v ¼ 93:28 m=s; third mode: v ¼ 139:92 m=s).
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of the beam is most significant when the load inertia is taken into account. Note also that the
parameter dj leading to the highest value of the deflection is low compared to the moving force
model. In other words, the resonance occurs at lower moving load velocities for the moving mass
model. The mass parameter E and the damping coefficient Z also influence significantly the
deflection of the beam. As shown in Fig. 5, as E increases, the deflection of the beam grows bigger.
But when Z grows, the deflection of the beam decreases (this is obvious because in practical
situations, the deflection of beams can be reduced by acting on the damping).
Fig. 6 shows the beam deflection for various materials (steel: E ¼ 200� 109 N=m2; r ¼

7850 kg=m3; iron: E ¼ 196� 109 N=m2; r ¼ 7800 kg=m3; cement=concrete: E ¼ 45� 109 N=m2;
r ¼ 2400 kg=m3; wood: E ¼ 16� 109 N=m2; r ¼ 800 kg=m3). It can be observed that steel and
iron give way to low deflection compared to that of wood. This is one of the reasons why they are
the most used in mechanical or civil engineering. In Fig. 7, the response of the beam in the case of
non-linear dynamics is compared with that of linear dynamics (by setting b ¼ 0 in this limit); in
this case the cross-section S is equal to 0:0055 m2 (note that the coefficient b depends on S
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Fig. 3. Beam deflection, variation with dj ; X ¼ 0:5; ZE ¼ 0:01; E ¼ 0:3; t ¼ 1; (resonance velocities—first mode: v ¼
46:64 m=s; second mode: v ¼ 93:28 m=s; third mode: v ¼ 139:92 m=s). The deflection of the beam in the second mode is
equal to zero according to Eq. (6) where fnðX Þ ¼ 0 for n ¼ 2 and X ¼ 0:5:
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Fig. 4. Beam deflection, variation with dj : force and mass models,.X ¼ 0:5; ZE ¼ 0:01; E ¼ 0:3; t ¼ 1:
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accordingly with the relation Eb ¼ E=rv2 where E ¼ M=rSIÞ: It is obvious from Fig. 7 that the
non-linearity contributes to a relative increase of the maximum deflection and the velocity at the
resonance.
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Fig. 5. Beam deflection, variation with dj : inertial effect,.X ¼ 0:5; Z ¼ 0:033; t ¼ 1:
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Fig. 6. Beam deflection, variation with dj : deflection for various materials,.X ¼ 0:5; ZE ¼ 0:01; E ¼ 0:3; t ¼ 1:
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3. Conclusions

The analysis carried out and the results obtained in this paper lead to the following conclusions:
The load inertia is to be taken into account in the study of structures under moving load. It can

only be neglected under two conditions:

* When the load velocity is higher than that which leads to the resonance in the beam.
* When the moving mass is very small compared to the mass of the beam.

When non-linearity comes into play, the beam deflection and the resonance velocity of the moving
load increase.
To avoid high deflection of the beam, the load velocity should be high enough to prevent

resonance of the first mode.
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